报告题目:Multiparameter bifurcations for a modified Gower-Leslie predator-prey system with additive Allee effect
报 告 人:吴奎霖
报告时间:2025年4月22日10:30—11:30
报告地点:#腾讯会议:711-841-198
报告摘要:In this talk,we deal with a modified Leslie-Gower type predator-prey model with Holling I functional response and addictive Allee effect in prey. It is shown that the highest codimension of a nilpotent cusp 4, and the model can undergo degenerate Bogdanov-Takens bifurcation of codimension 4. Besides, when the model has a center-type equilibrium, we show that it is a weak focus with order 5, and the model can exhibit Hopf bifurcation of codimension 5. Our results indicate that addictive Allee effect can induce not only richer dynamics and bifurcations, but also the coextinction of both populations with some positive initial densities.
报告人简介:吴奎霖,教授,博士生导师,贵州大学教授,研究方向是微分方程定性理论及应用。近年来主要从事于分段光滑微分系统的动力学研究,先后在Bull. Sci. Math., Ann. Mat. Pura Appl., JMAA., DCDS-B, Sci. China, Math.等国际学术期刊上发表学术论文30余篇,主持国家自然科学基金4项。